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1. Introduction 

We present an analysis of the Schottky scan on a rotating 

beam made of a large number of charged particles. The Schottky 

scan was originally intended as an application of the Schottky 
1 effect , and has been applied for the first time to the beams 

in the ISR2. It has also been tried in the Fermilab Booster3 

by letting the beam coast without acceleration. 

We first look at the frequency manipulation of a frequency 

analyser (Section 2). We express the output of the analyser as 

function of the current in entrance. In Section 3 we discuss 

the current induced by the beam and the distortions due to the 

detection and the transport of the signal. We take into account 

the effects of the beam losses and of the limited duration of the 

observation. 

The frequency spectrum of the induced current in the case 

of random initial.conditions is investigated in Section 4. The 

accuracy of the scan depends only on the resolution of the 

frequency analyser. It is possible to measure the beam frequency 

distribution only if the beam losses are not correlated to the 

distribution. 

The same analysis is applied to a coasting beam, with 

no-random initial conditions, in Section 5. The amplitude of 

the spectrum is now proportional to the total number of 

particles in the beam, whereas in the previous case it was 

to the square root of it. 
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Throughout the paper, we assume that the particles do not 

interact with each other and that no external forces are applied 

to the beam. 

We draw the conclusion in Section 6. According to our 

model it is possible to perform truly Schottky scan, namely 

Schottky noise scan, only when the distribution of the initial 

condition is a random one. This is hardly satisfied in a storage 

ring or particle accelerator. Otherwise what is measured is 

essentially the structure of the beam in the phase space, and 

it is practically impossible to unfold the energy distribution 

out of a single line of the frequency spectrum. 

The author wishes to thank F. E. Mills and L. C. Teng for 

many useful discussions. 

2. The Frequency Analyser 

Let us consider the flow diagram of Fig. 1 which shows a 

charged beam moving down the pipe of a particle accelerator and 

through a charge detector. This one is connected to a frequency 

analyser by means of a switch S and a cable properly terminated 

at both ends. The switch S is fictitious and meant to replace 

a more complicated circuitry which triggers the frequency analyser 

at a desired time and over a desired period of time. The current 

generated by the beam at the entrance of the analyser will be 

denoted by j. It is a function of the time t whose origin t=O 

will be set in correspondence of the closing of the switch S to 

let the current flow from the detector to the analyser. 
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The block diagram of the frequency conversion in the 

analyser is shown in Fig. 2. This corresponds, basically, to 

the Tektronix 7L12 which is actually used for "Schottky Scan" 

in the Fermilab Booster. 

One can expand the RF input in a Fourier integral and write 

j (t) = 
s 

j(w) e lWtdw 

where here and in the following the sign of integral without 

limits stays for an integral from -co to +m. 

It can be easily proven with a formal construction that 

the current I(t) in entrance of the rectifier shown in the 

(1) 

diagram of Fig. 2 is given by 

I(t) = s 3(w) B(Rl-w)e 
-i(Ql-a2+Q3-w)tdw 

where s1 1' R2 and Q3 are the (angular) frequencies of the local 

oscillators and B(fll -w) is the resolution function of the 

analyser. It is zero everywhere except in a range A around 

Rl-w = t wf(=2.095 GHz). A is the resolution of the analyser. 

I(t) is a 10 MHz RF current with amplitude proportional to 

the contained of j(t) at the frequence which is the difference 

between the first local oscillator frequency and 2.095 GHz. The 

rectifier just demodulates the 10 MHz current and one has in 

output a DC level proporational to the peak of I(t). 

3. Analysis of the Beam Induced Current 

Let us denote the total number of particles present in the 

beam at the time t = 0 by N. Also, let js(t) be the current 
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induced by the s-th particle so that 

j(t) = i js(t) a 
s=l 

In the beam, if one considers particles as point-like 

charges, n 
js = e 7 

n=l 
6 (t-tsn) 

(2) 

(3) 

where e is the charge of each particle and tsn (>O) is the time 

when the s-th particle crosses the detector for the n-th time 

since the switch S has been turned on. The s-th particle 

crosses the detector ns times, after that either the switch S 

has been reopened and the measurement interrupted or the particle 

is somehow lost, whichever occurs first. 

The Fourier expansion of (3) gives easily 

n 

js = &f eiu (twtsn) dw . 
n=l 

(4) 

So far, as also shown in Fig. 1, a particle has been 

represented by a delta function in the beam, (A). But the 

distribution of the current induced on a perfectly conductive 

wall, (WI has the shape of a bell4 with a full width at half 

of the maximum equal to the pipe size divided by the ratio of 

the particle total energy to the rest energy. 

In case the detector is made of a perfectly conductive 

cylindrical plate surrounding the beam, the current in exit, (C), 

is the integration, at a given time t, of the induced current 
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over the detector length. In addition, the detector itself 

introduces a distortion which can be characterized by a cut-off 

frequency. 

Further distortions can be introduced by the transport of 

the signal from the detector to the frequency analyser, (D), 

which mainly consists of a long matched cable. 

Thus it is convenient to modify eq.(4) as follows 
n 

js = &f r 
iw(t-tsn) 

J 
gsn(d e dw 

n=l 

where g 
sn 

may depend on the energy of the s-th particle and 

includes all the effects mentioned above. 

One can derive the beam induced current at the entrance of 

the frequency analyser by combining (2) and (5). One has 

j(t) = & 
iw(t-tsn) 

gsn(u) e dw . 
s=l n=l 

(5) 

(6) 

We shall consider only the following case: all the 

particles have constant velocities, and 

t = 
sn % 

+ (n-l)Ts 

where ts is the time of the first traversal of the detector 

(ts>O) and T s is a constant which depends only on the velocity 

of the particle. In this case (6) becomes 

j(t)- = & g(w,Ts) AhnsfTs) e 
iw(t-ts) 

dw (7) 

where g(w,Ts) replaces gsn (w) and 
n ‘S 

Ab.bnsrTs) = 1 e 
-iw(n-l)Ts 

n=l 

n S-l 
n 

-i - S Ts w 
2 TSW 

sin 2 
= e . 

sin TSW 
-2- 

(8) 
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4. The Frequency Analysis of the Beam 

Induced Current 

The Fourier transform ;(w) of the beam induced current j(t) 

at the entrance of the frequency analyser is obviously given by 

the function which multiplies e iwt dw under the sign of integral 

at the righthand side of (7), namely 

3(w) = &If SF1 g(w,Ts) A(w,ns,Ts) emiwts 
= 

which has to be inserted at the righthand side of (1). The 

integration over w can be done with the method of the residuals. 

For this purpose we assume that B(Ql-w) and g(w,Ts) have no 

singularities in w. Then the only singularities are those of 

the function A(w,ns,Ts) given by (8). 

One obtains 

I(t) = 2 
k=l s=l 

H(t-ts,ns,Ts) x 

(9) 

where 

H(t,n,T) = 1 , for -T/2 < t < nT - T/2 

= 0 I otherwise 

W  = 
0 R1 - a2 + iI3 - 2n $=271 x 10 MHz 

S 
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and (bks is some phase angle which does not depend on t 
S’ 

Let us take the square of both sides of (9) that we shall 

denote by 12. It is made of four summations 

kl=l k2=1 s1 =l s2=1 . 

To perform the summations on s1 and s2, let us introduce 

a 4-dimensional space of coordinates T 1' nl' T2 and n2 and 

let us divide it in identical cells, small enough so that the 

four variables change so little inside that they can be kept 

constant, but large enough to accommodate a large number of 

particles. Thus the double summation can be performed by 

summing first over all the particles in each individual cell, 
. of coordinates (Tic, nlc, T2c, n2c), and then over all the cells. 

If we assume that ts 's are not correlated to the n s's and T 's, 
S 

it is obvious that one has to deal with partial summations of 

the kind 

t t sl 
+ 'klc 

s2 - 
1 Tic 

+ 2rk2 5 + @k2C . 

over one cell 

We shall assume that the distribution of the tS's is completely 

random over the range (0, Tc). We want to estimate the expectation 

value of S as the average over an ensemble of M -t ~0 beams owing the 

same properties but with different random initial conditions. 
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It is easily proved that the terms with s1 # s2 are identically 

zero in the limit M + 00. The only contribution comes from the terms 

s1 = s2 which correspond to the same particle, and they are located 

only on the diagonal cells where n lc = n2c = nc and Tic = T2c = Tc. 

Moreover this contribution is different from zero and equal to Nc/2, 

with N c the actual number of particles in the diagonal cell, only if 

k2 = kl = k. Then one has from (9) 

I2 = 2 y l”2N B 2mk 
k=l c Tc2 ' 

H(t,nc,Tc) 'Q g Cy,Tc 
\ C 

Thus the power spectrum is made of infinitely many lines 

all centered around frequencies which are integer times the main 

revolution frequency. The width and height of each line depends 

on the resolution of the frequency analyser, on the distortion 

the current suffers from the beam to the frequency analyser, on 

the beam loss and on the spread in the beam. 

In a typical scan, one would vary Ql to pick up only one 

mode k small enough so that 

2rk 
'( T -,T) '~1 . 

On the other side it is desirable to choose a high value of k 

so that the resulting width of I(Ql) is large enough compared to 

the resolution A of the analyser, but not too large to avoid 

overlapping of neighboring distributions at different k. 

(11) 
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By introducing a continuous distribution function p(T,n) 

such that 
* 

,jp (T,n) f dT dn = 1 

one obtains from (10) 

2 
e H(t,n,T) 
T2 

~2 I’ 12 
B(Rl - T) p(T,n) dn 

In the special case of monoenergetic beam with no losses, 

one has 

I(Ql) = m p B(Q, - 
I 

?$ /  l 
(12) 

If one plots I versus Rl one finds a line centered at 

!a1 = Wf + 2rk/T having a width A. This replaces the ideal 

line with zero width which corresponds to the beam. In any 

case the accuracy of the measurement depends only on the resolution 

of the analyser. The overall frequency resolution is not affected 

by the length of the observation time t spent for a specific value 

of w 
1' 

In case of no beam losses one has 

e2 

T2 I 
B(Ql - F) I2 

and the plot of I 2 versus Ql gives the distribution p(T). 

For instance, if k is large enough, one can disregard the 

accuracy of the analyser and has 

(13) 

N p(T) = G 12(Gl) . 
e2 

(14) 
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One would obtain the same result also in the case of beam 

loss which is not correlated to the frequency distribution. In 

this case one can write p(T,n) = p(T) a(n) and make use of (14) 

after having replaced N with the number of particles N(t) survived 

at the time t. But in the case the loss is correlated to the 

frequency distribution, then it is not possible to unfold this 

distribution out. 

5. Frequency Analysis of a Coherent Beam 

In this section we shall consider the case that the 

distribution of the initial conditions of the particles in 

the beam is not random. We introduce the longitudinal phase 

space of the canonical variables 0 and W, 0 being actually the 

angle around the reference orbit. Let F(O,W) be the particle 

distribution at the time to prior to the instant t=O when the 

switch S of Fig. 1 is turned on. We take 

JJ F(O,dW) dOdW = .1 . 

In the case there are no interactions among the particles, 

and no external forces of any sort are applied to the beam, the 

distribution at a later time t is given by 

F(O- nit-t,), W) 

whereS2i.s the angular revolution frequency of a particle with 

variable W. The current associated to the beam at the location 

of the charge detector (O=O), then, is 

j(t) = Ne fi F(-Q(t-to),W) dw . 
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Since F(O,W) is a periodic function of 0 with period 27~ 

we can also write 

with 

j (t) = Ne 1 
k 

fiFk (w) 

+TT 
f 

Fk(W) = $-+ 
J 

F(O,W) e ikodO . 

-Ii 

The Fourier expansion of this current which we assume to 

last from the time t=O to the time tl, gives 

j (t) = (w) eiwtdw 

where 

;(w) = iz 1 

ikQto -i(kQ+w)tl 

Q Fk(W) e 
e 

kR+w -ldW . 
k 

Introducing again the transmission function g(w,W) as it 

was done in Section 3, we have for the current at the entrance 

of the frequency analyser 

$% j(t) = e 
4 

J(W) g(w,W) eiwtdw . 

The integration over w at the righthand side of (1) can 

again be done with the method of the residuals. We assume 

again that B(Gl -w) and g(w,W) have no singularities. 
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We obtain for O<t<tl 

I(Ql) = Ne Q Fk(W) g(kQ,W) x B(Rl-kR) dW . (15) 

One can again retain only one particular value of k such 

that (11) applies, and 

I(Ql) = Ne Fk(W) B(Rl-kfi) dw. 

In particular for a monoenergetic beam we can take 

Fk (w> = ak rS(W) and have 

r(fll) = Ne Rak B(Rl-kO) 

(16) 

(17) 

which corresponds to a line centered at Ql = kR + of having a .- 

width A and an amplitude proportional to ak. 

In the more general case it is not possible to unfold the 

energy distribution out of (16), unless the initial distribution 

function F(O,W) is separable. 

Finally, let us observe that the spectrum (15) does not 

depend on the time to during which the beam is let to "debunch" 

before to start the observation. 

6. Conclusions 

We have calculated the frequency spectrum of a rotating beam 

made of a large number of particles in two different cases: (i) 

At an initial time prior to the starting of the observation, the 

distribution of the particles in the longitudinal phase space (0,W) 
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is completely random. (ii) At the same initial time the distri- 

bution function of the particles in the longitudinal phase space 

is not-random and is given by an analytical function F(O,W). 

In both cases we assumed that, from that initial time on 

and during'all the observation, the particles were not interacting 

each other and no external forces were applied to them. Therefore, 

in the first case, the distribution,remains random also during the 

observation period, whereas in the second case, the bunching 

structure of the beam will be preserved in the (0,W) phase space. 

The frequency analysis of the beam made with the technique 

known as Schottky scan, is sensitive to the distribution in the 

longitudinal phase space. Furthermore, as we have seen in the 

previous section, the result of the analysis does not depend on 

the time one waits to let the beam "debunch". 

Our main result is given by eq.s(l3) and (16) which are 

the beam spectra respectively for the case (i) of random initial 

conditions and for the case (ii) of non-random initial conditions. 

The special formula'for the case of a monoenergetic beam are given 

by eq.s (12) and (17). 

Because the beam Schottky "noise" is proportional to the 

square root of the number of the particles, it usually provides a 

weaker signal, whereas the coherence of the beam, being proportional 

to the number of the particles, usually provides a stronger signal. 
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The two signals would equal when the coherence factor 2~rcxk 

satisfies the relation 

2Trcxk =GpL 

For instance in the case of a.beam made of 10 14 particles 

(like in the ISR), truly Schottky noise scan is possible only 

when 21~0,~ << 10 -7 . A condition which we believe is rather hard 

to satisfy. 
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